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ABSTRACT

Flutter analysis of a two degree of freedom airfoil in compressible flow is performed

using a state-space representation of the unsteady aerodynamic behavior. Indicial response

functions are used to represent the normal force and moment response of the airfoil. The

structural equations of motion of the airfoil with bending and torsional degrees of freedom

are coupled to the unsteady airloads and the aeroelastic system so modelled is solved

as an eigenvalue problem to determine the stability. The aeroelastic equations are also

directly integrated with respect to time and the time-domain results compared with the

results from the eigenanalysis. A good agreement is obtained. The derivatives of the

flutter speed obtained from the eigenanalysis are calculated with respect to the mass and

stiffness parameters by both analytical and finite-difference methods for various transonic

Mach numbers. The experience gained from the two degree of freedom model is applied

to study the sensitivity of the flutter response of a wing with respect to various shape

parameters. The parameters being considered are: (i) aspect ratio, (ii) surface area of the

wing, (iii) taper ratio and (iv) sweep. The wing deflections are represented by Chebyshev

polynomials. The compressible aerodynamic state-space model used for the airfoil section

is extended to represent; the unsteady aerodynamic forces on a generally laminated tapered

skewed wing. The aeroelastic equations are solved as an eigenvalue problem to determine

the flutter speed of the wing. The derivatives of the flutter speed with respect to the shape

parameters are calculated by both analytical and finite difference methods.
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1. INTRODUCTION

Flutter is a dynamic aeroelastic instability that involves the coupling of inertial, elastic

and aerodynamic forces. Studies on transonic flutter are important in the design of air-

crafts which operate in the transonic regime. Moreover, as compressibility effects are very

important in transonic flow, a compressible aerodynamic theory must be used to model

the unsteady aerodynamic behavior.

The various methods that are used for flutter analysis of a two dimensional airfoil

differ in the prediction of aerodynamic loads. The lift and moment predictions on an

airfoil undergoing harmonic motion have been obtained by Theodorsen [1]. Several CFD

methods which are used to determine the transonic flowfield around two dimensional airfoils

are listed by Ballhaus and Bridgeman [2]. BaUhaus and Goorjian [3] performed time-

marching transonic flutter predictions using the transonic aerodynamic code LTRAN2.

Yang e_ al. [4] performed flutter analysis of the NACA 64A006 airfoil with pitching and

plunging degrees of freedom using aerodynamic coef_cients obtained from the transonic

codes UTRANS2 and LTRAN2. Guruswamy and Yang [5] used the LTRAN2 code for

studies on aeroelastic time response analysis of airfoils. The aerodynamic force and moment

response of an airfoil can be represented by indicial functions. Indicial response for an

incompressible flow was obtained theoretically by Wagner [6]. Jones [7] used a two-pole

exponential approximation to the Wagner function. Venkatesan and Friedmann [8] have

given a three-pole indicial response function that can express the Theodorsen's function

over the entire reduced frequency range.

Flutter analysis of wings are also done using different representations of the aerody-

namic loads. Kapania, Bergen and Barthelemy [9] have used the Yates modified strip

analysis [10] for representation of the unsteady aerodynamic loads in obtaining the flutter
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responseof a laminated wing. A recent review of various studies in unsteady transonic

flow calculations was given by Tjatra [11]. Advancedcodessuch as XTRAN3S [12] and

CAP-TSD [13], which use the transonic small disturbance equation are currently being

used for aeroelastic analysis.

Leishman and Nguyen [14] have represented the aerodynamic indicial response func-

tions for compressible flow by upto three-pole approximations, the response consisting of

two parts, one due to non-circulatory loading and the other due to circulatory loading.

This has advantages over the CFD-based methods in the sense that the CFD methods are

in general computationally very expensive.

In recent years, considerable efforts are being made to integrate the aerodynamic,

structural and control aspects of the design of an aircraft. Livne [15] notes that for in-

tegrated multidisciplinary wing synthesis, where design for aeroservoelastic stability is an

objective, it is required to represent the aeroelastic equations of motion in Linear Time

Invariant (LTI) state-space form. The unsteady aerodynamic loads on the wing can be

represented in a state-space form, thereby adding only a small number of states to the

mathematical model of the aeroservoelastic system.

Sensitivity analysis is becoming an important design tool in engineering design ap-

plications. It was first recognized as a useful tool for assessing the effects of changing

parameters in mathematical models of control systems. The gradient based mathematical

programming method used in optimal control and structural optimization furthered the

development of sensitivity derivatives, because sensitivity derivatives are used in search

directions to find optimum solution [16]. Sensitivity analysis has also become a versatile

design tool, rather than just an instrument of optimization programs [17]. Sobieski [18]

discusses in detail about the System Design Derivatives which help in understanding the
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effect a particular designvariable would have on the desired performance of the system, if

it were perturbed by a small percentage from its original value.

The sensitivity derivatives of a system can be found using either analytical or finite

difference methods. Analytical sensitivity analysis has found increased interest in engi-

neering design as it eliminates uncertalnity in the choice of step size needed in the finite

difference method. The step size if too large leads to truncation errors and if too small

leads to ill-conditioning.

Adelman and Haftka [17] have shown that structural sensitivity analysis has been

available for over two decades. Structural sensitivity analysis has been sufficient in the

past because sizing variables such as plate thickness and cross-sectional areas affect the

mass and stiffness properties of the airframe, but, not its basic geometry. Therefore,

aerodynamic sensitivity analysis capability has been limited in development until recently.

For example, Rudisill and Bhatia [19] developed expressions for the analytical derivatives of

the eigenvalues, reduced frequency and flutter speed with respect to structural parameters

for use in minimizing the total mass.

Pedersen and Seyrm:Lian [20], examined the change in flutter load as a function of

change in stiffness, mass, boundary conditions or load distribution. They showed how

sensitivity analysis can be performed without any new eigenvalue analysis. The solution

to the main and an adjoint problem provide all the necessary information for evaluating

sensitivities. Their paper mainly focused on column and beam critical load distributions.

Hawk and Bristow [21] developed aerodynamic sensitivity analysis capabilities in sub-

critical compressible flow. They first analyzed a baseline configuration, and then calculated

a matrix containing partial derivatives of the potential at each control point with respect
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to each known geometric parameter by applying a first order expansion to the baseline

configuration. The matrix of partial derivatives is usedin eachiteration cycle to analyze

the perturbed geometry. However,this analysisonly handles chordwiseperturbation dis-

tributions, such as changesin camber, thickness and twist. A new approach, which is

still under development,hasbeenpresentedby Yates[22] that considersgeneralgeometric

variations, including plan.form, and subsonic, sonic and supersonicunsteady, nonplanar

lifting-surface theory.

Recently, Livne ef al [23] applied an equivalent plate structural modeling, which in-

cludes transverse shear, to an HSCT wing. Simple polynomials were used for Ritz functions

and depth and thickness distributions. The derivatives of the stiffness and mass matrices

were obtained analytically with respect to the shape variables of the wing. Livne [24]

observed that as higher order polynomials are used for better modeling of the structure,

the more sensitive is the finite difference derivative to the step-size used and in some cases,

it is impossible to obtain any valuable information by finite differences.

Barthelemy and Bergen [25] explored the analytical shape sensitivity derivatives of

the wing's aeroelastic characteristics, such as section lift, angle of attack, rolling moment,

induced drag and divergence dynamic pressure, for subsonic subcritical flow, with respect to

geometric parameters. Results showed the characteristics nonlinearity to be small enough

to be well appro_mated by sensitivity based linear approximations. These approximations

are valid within a range that is useful to designers in the initial design phase.

Kapania [26] has obtained sensitivity derivatives of the flutter speed of a two dimen-

sional airfoil in incompressible flow with respect to the mass and stiffness parameters.

Kapania, Bergen and Barthelemy [9] have obtained the shape sensitivity derivatives of the
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flutter responseof a laminated wing in incompressibleflow. In this work, Yates' mod-

ified strip analysis [10] was used for the aerodynamic model in conjunction with Giles'

equivalent plate analysis [27,28] for the structural model.

Sensitivity derivatives are of great importance in integrated multidisciplinary design

optimization of aircrafts. Kaz'pel [29] used a gradient-based constrained optimization on a

composite active-flexible wing to achieve aircraft performance requirements and sufficient

flutter and control stability margins with a minimum weight penalty and without violating

the design constraints. The sensitivity derivatives of the flutter dynamic pressure, control

stability margins and control effectiveness with respect to structural and control design

variables were obtained analytically.

Hajela e_ al [30] applied Sobieski's Global Sensitivity Equations (GSE) in an aircraft

synthesis problem where the constraints involved the coupled disciplines of structures, aero-

dynamics and flight mechanics. The coupled system was represented by smaller subsystems

and the total behavior sensitivities were determined by applying the GSE method.

Barthelemy et al [31] discuss a multidisciplinary design optimization method applied

to a supersonic transport wing. Aerodynamic and structural disciplines are integrated for

a minimum weight design under static aeroelastic constraints. He points out that as the

number of dependent variables in each discipline becomes large, the calculation of the finite

difference derivatives contributes substantially to the total optimization cost.

In this paper, the flutter speed of a two degree of freedom airfoil with plunging and

pitching degrees of freedom in transonic flow is determined. The aerodynamic force and

moment response are represented by indicial response functions as given by Leishman and

Crouse [32]. The resulting aerodynamic state equations are coupled with the structural



equations and the stability of the aeroelasticmodel soobtained is determined usinganeige-

nanalysis. Flutter calculations are alsoperformed in the time-domain using the Wilson-8

method and the results comparedwith the eigenanalysisresults. The flutter speedof the

airfoil is estimated andthe sensitivity derivativesof the flutter speedwith respect to various

paramaeters,namely, massratio, static unbalance,radius of gyration, bending frequency

and torsional frequency are calculated by both analytical and finite difference methods.

The aerodynamic state-space model [14] is then modified to represent the unsteady aero-

dynamic £orces on a wing. The wing structure is modelled as a wing box and Chebyshev

polynomials are chosen for the displacement function. The aeroelastic equations for the

wing are solved as an eigenvalue problem to determine the stability. The derivatives of the

flutter speed are calculated with respect to the shape parameters, namely (i) aspect ratio,

(ii) area, (iii) taper ratio, and (iv) sweep, by analytical and finite difference methods. To

the best of our knowledge, this is a first study on the sensitivity analysis of the flutter

response in transonic flow.
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2. AERODYNAMIC MODEL

In recent years, considerable efforts are being made to integrate the aerodynamic,

structural and control aspects of the design of an aircraft. Since the control and the

structural dynamic behaviors can easily be expressed in terms of the state-space form (i.e.,

in terms of a set of first order ordinary differential equations in time), it is desirable that

the unsteady aerodynamic airloads be also expressed in the same form. In recent years,

considerable efforts have been made in that direction.

The state-space approach has the advantage that any system of differential equations

can be represented by a set of first order ordinary differential equations of the form

/c = Ax+ Bu

with the output equations given by

y = Cx + Du (1)

where x are the aerodynamic state variables, u are the system inputs and y are the system

outputs. If the unsteady aerodynamic behavior can be represented by state equations,

then they can be easily coupled to the structural equations of motion and the resulting

system can be examined for aeroelastic stability.

The aerodynamic force and moment response of an airfoil can be represented by indicial

functions. For example, Jones [7] used a two-pole exponential approximation to the Wagner

function [6] given by

¢(S) = 1 - O.165exp(-O.0455S) - 0.335exp(-0.3S) (2)

where S = 2Vt/c, V is the freestream velocity, t is the time and c is the chord. The

state equations describing the unsteady aerodynamic response can then be obtained by the
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application of Laplacetransformsto theseindicial functions. The resulting state equations

are

{ l}i 0 1 j{ l}{0}£2 -- --0"01375('7_)2 -0"3455('_E) +
x2 1

(a)

with the output equation given by

ON(t) = 2'rr[0.006825(-._) 2 0.10805( )] + 0.5aa/4(l!) (4)

X2

where CN is the normal force coefficient and a is the angle of attack.

In this paper, the state-space representation given by Leishman and Nguyen [14] has

been used to represent the compressible unsteady aerodynamics. The indicia[ normal force

and quarter chord pitching moment responses to a step change in angle of attack a and a

step change in pitch rate q can be written as [14]

CN(S)
Oz

c (s)

CN(S)

4 I

-/_-¢a(S,M) + CNo(M)¢ca(S,M)

1 z
- -_¢_,M(S, M) + CN, (M)¢ c(s, M)(0.25 - x,c(M))

_ 1 q_(g,M) + CN.(M)_c(S,M )
M 2q

CM(S) 7 I

_= IfI_q_qM(S,M)q

CNo(M) c
16 _qM(S'M)

(5)

where @C,¢_,¢_M,@C,@qCM,¢_ M are exponential functions of 5' and M. Here, M is the

Mach number, q = &c/V is the pitch rate, CN is the normal force coefficient, CM is the

pitching moment coefficient about the quarter chord and CNo is the normal force curve

slope. The superscripts C and I refer to circulatory and non-circulatory components of

the indicial response functions. Note that _ (where _/= x/1 - M 2 is the compressibility

factor) in [14] has been replaced by CN, (M), so that experimental values of CN_, obtained

as functions of Maz_h number can be used.
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The aerodynamic state equationshave been shownby Leishman and Nguyen [14] to

be given by

where

A - diag[a11 a22 a33 a44 a55 a66 a77 a8s]

B=[ 1 1 101100] T0.50.5010011

(6)

The output equations are given by

(7)

where

C -- [Cll c12 c13 C14 0 0

[ C21 C22 0 0 C25 C26

D- -1/M -7/12M

0 0]C27 C28

The nonzero terms of the aii's and cij's are given in the Appendix.
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3. FLUTTER ANALYSIS OF THE AIRFOII,

AEROELASTIC MODEL

The aerodynamic equations in state-space form can be coupled to the structural equa-

tions of motion of an airfoil section with bending and torsional degrees of freedom. The

equations of motion for the airfoil section shown in Fig.1 can be written as

ra'h -I- SoO -I- ghh + mw_h = Qa

(s)
:_oh+ zj + 9oo+ zo_o = Qo

where m = 7r#p(c/2) 2 is the mass per unit length, p is the mass ratio, p is the air density,

£o = rn(c/2)2r_ is the polar moment of inertia about the quarter chord per unit length, ro

is the radius of gyration about elastic axis, So = m(c/2)xo is the static mass moment, xo

is the nondimensional distance in semichords from elastic axis to center of mass, h is the

plunge displacement (positive downward), 8 is the pitch angle, w_ and w0 are the bending

and torsion frequency respectively, gh and go axe the structural damping coefficients in

plunging and pitching respectively and Qh and Qo are generalized aerodynamic forces in

phmging and pitching respectively.

By defining the states

zl-h, z2=O, za=h, z4=O, (o)

the above equations can be written as

where

M .._ [ms.] 0]So Io g= go

(10)
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k= "mo.,_ 0 ]
0 Iaw_ J

In order to couple the structural and aerodynamic equations, the input vector can be

expressed in terms of the z states as given below

0 0
q

Z1

0 ] z2c/V
Z3

Z4,

(11)

The aerodynamic state equations and the output equations then respectively become

= Ax + [B_ B_]z

Q = C'x + [D_ D_]z

(12)

where A is a diagonal 8x8 matrix, B_ and B_ are 8x2 matrices, C' is a 2x8 matrix and

D_ and D_ are 2x2 matrices.

The resulting set of first-order differential equations in terms of the z and x states are

[ 0il{z}[0i oj{)0 M = Dt-k D2-g

0 o i B_. B_, x

given by

(13)

which is a 12x12 system of linear equations. The stability of the system could be determined

at different free-stream speeds by an eigenanalysis of the above system of equations. The

flutter speed is that particular value of the free-stream speed at which the real part of the

eigenvalue approaches zero.
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The aeroelastic equations (13) could also be integrated with respect to time using a

time-integration scheme. The Wilson-0 method [33] was used for this purpose. A set of

first order ODEs can be represented as

[2]{u'}= [s]{u} (14)

In the Wilson-8 method, it is assumed that the variation of acceleration from time t to

t + OAt, where 8 > 1.0, is linear. At time (t + 8At), then

OAt. i

Then equation (14) becomes

[[R]-IS] °_t] ' o_t ,.2 J{u,+o,,,}= [Sl{., + -5-_,}

(15)

(16)

Using the starting values of {u,} and {u_} at time t, {u_+o_t} is computed from equation

(16). The vector {u_+oAt} is then calculated from equation (15). The new values of

{ut+o,',t} and {u_+oat} are then used in equation (16) to update the {u't+0at} vector. The

step-by-step integration of the equations is done in this manner with respect to time by

repeating the above process. The amplitudes of plunge and pitch displacements are then

monitored as time progresses.
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4. FLUTTER ANALYSIS OF THE WING

STRUCTURAL MODE[,

The structural formulation is based on a Ritz solution technique using the energy

functionals for a laminated plate which includes the bending and stretching of the reference

surface. The planform geometry can be represented by any generally tapered skewed

configuration. The original rectangular (x, y) coordinate system and the transformed (q, _)

coordinate system of the wing are shown in Fig.2. The z - y plane is the mid-plane of

the wing and the z axis is normal to the wing. For an unswept wing the fiber angle is

measured counterclockwise from the positive y axis. As the wing is swept, the fiber angle

is also rotated correspondingly.

In the Rayleigh-Ritz formulation, Chebyshev polynomials Ti are used to represent the

displacements at any point on the wing[34]. The Chebyshev polynomials are given by

T0(¢)- 1

Tx(¢) = ¢ (17)

Ti(¢) = 2¢Ti-1 - Ti-2 - 1 <_ tb <_ 1

The displacements are expressed in terms of the Chebyshev polynomials as shown

I J

=
i=0 j=0

K L

v(,.¢) = S..T.(,)T.(¢)
k=0 1=0

M N

W(q,_)- E E P_,Tm(y)T,_(_)
rn=O n=O

- 1_< r/,__<1

(18)

It has been shown by Singhvi and Kapania [34] that for free vibrations of the laminated

composite wing (i.e., in the absence of aerodynamic forces) the equations of motion can
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be derivedusing classicalplate theory in the form

[M]{4"}+ [Rl{q}=0 (19)

where [/(] and [M] are the stiffness and mass matrices. The eigenvector {q} is defined as

q = (R00, Rox, ...Ri_; Soo, S01, ...Skt; Poo, Pol, ...P,,,,O T (20)

Linear and rotational springs of large magnitude are placed at the wing root to satisfy the

clamped boundary conditions. The stiffness matrix for the plate alone (i. e., excluding the

springs) is

=f_l f_I[B]T[T]T[B

where [B] is the matrix whose elements consist of the partial derivatives of the Chebyshev

polynomials with respect to the natural coordinates 7/and _ and is defined by

_, = [Bl{q} (22)

where

/gt / T_, =(u, 1 u_ % v_ w, 7 w, m w_ w,_)

The IT] in equation(21) is the transformation matrix that relates the strain and curvature

vector in the (x, y) coordinate system to the strain and curvature vector in the (r/, _)

coordinate system and J is the Jacobian of the transformation. The strain transformation

is given by

,..,
where
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The details of the [T] and [B] matrices and J are given in [35]. A typical element of the

mass matrix [M] is given by

M_j = T_,(rl)T:(_)T,,(rl)Tp(_)JjJdrld_
1 1

(24)

The coefficients Rii and Skt in {q} corresponding to the inplane displacements in

equation(19) are condensed out using static condensation to the form

[M]{P_n} -t- [K]{Pmn} -- 0 (25)

where [M] is the mass matrix and [K] is the stiffness matrix of order (m + 1)x(n + 1) with

generalized coefficients {Pmn}- In the present work, a value of 5 is chosen for both m and

AEROELASTIC MODEL

The aerodynamic state space model which was used for the aeroelastic analysis of a

typical section is extended to represent the unsteady aerodynamic forces acting on a wing

in transonic flow. The lift and moment forces on a typical section acting at the quarter

chord axe given by equation(10) as

1 2

L = _pV CCN

M = lpV2c2CM

When extending this compressible aerodynamic theory to a finite span wing, the lift

forces axe assumed to be distributed along the quarter chord line (reference line) and the

moments act about the reference line. Since the lift and moment forces axe non-conservative

forces, using the principle of virtual work, we get

6Wn¢ = -L6hd_ + M_Od_ (26)
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where l is the length of the quarter chord line, _h and _ are virtual displacements and

is the coordinate along the reference line.

The displacement at any location ff is given by

h(_) = w(q,_) (27)

where q and ( are the natural coordinates corresponding to the (x, y) coordinates of the

point at distance _ from the origin.

The rotation about the reference line is given by

8(9) = w,_ cosA - w,u sinA (28)

For facilitating in numerical integration using Gaussian quadrature, the limits of integra-

tion along the reference line are transformed in the range of -1 to 1 by ff = l(1 + ¢)/2,

where -1 < ¢ < 1

Substituting the expressions for the lift and moment on the wing and the wing deflec-

tion, we have

lF= - L6hd¢
2 1

"-- _-(_pV2¢)££[_{[C1,]{x)
i=0 j=O

and

jfolM6Od9

= 2 /_11M_Od¢

i=O j=0

+ [D,p,][ Hi.i 0 [ P./j

(29)
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wherem and n represent the order of the Chebyshev polynomial used in the displacement

function. The row vectors [Clp] and [C2p] are the elements of the [C] matrix (see section on

typical section) where p - 1, 2,..., 8. The row vectors [Dip,] and [D2p,] are the elements

of the matrix given by

[D] = -1/M -7/12MJ 0 0 c

where pr = 1,...,4.

The variables wz and w2 in equation (29) are given by

w_ = T,(y)Ti(_)

w2 = co A(T ,,Tj,7, ) - )

where A is the sweep angle.

(31)

[Hi/] in equation(29) is a matrix of order 2xN where N = (m + 1)(n + 1). A typical

column of the matrix is given by

H_ - cosA(Ti,,TTj%z +TiTj,_,z ) _ sinA(Ti,'tTjrl,y +TiTj,_,y )

where k = 1, 2,..., N.

(32)

The column vector {x} in equation(29) is the vector of aerodynamic state variables

and {Pij Pij} T is the vector of generalized displacements.

It should be noted that in the integrations performed along the quarter-chord line in

equation(29), a constant value of the section lift-curve slope CNa is used. But for a finite

3D wing, the wing lift-curve slope depends on the planform of the wing which makes CNa

sensitive to the shape variations of the wing.
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Using equations(27),(28)and (29), equation(26)can be written as

N

6W.c = Z Qi6Pi , Y = (m + 1)(n + 1)
i=l

where

(33)

(34)

The aerodynamic state equations(6) for a typical section perpendicular to the quarter

chord line were in the form

{i} = [A]{_}+ [B]{.}

An integration of these state equations along the quarter chord line to consider the effect

of finite span yields

P_j
1 1 [B][H# HO#]{15ii}]d ¢{_}=2_1 f[A]{x}+ 0

P_i (35)
= [A']{x} + [B_ B_]( tSIj }

The equation(25) can be written as aset of first order ODE's in {Pij} and {fiij) which

will be represented by {pl} and {qi} respectively. It can be coupled with equations(34)

and (35) to generate the aeroelastic equations of the wing in the form

M ¢1 - D12,k D_ C'. _ (36)
0 B 1 B_ A'

Since a Chebyshev polynomial of order 5 is chosen for the displacement function in r/

and _, we have 36 generalized coeitlcients {Pl}, their 36 time derivatives {qi} and the 8

aerodynamic state variables {x}. The stability of this system can be determined by solving

an 80x80 eigenvalue problem.
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5. SENSITIVITY ANALYSIS

The a_roelastic equations obtained as a set of first order ODEs is of the form

[P]* = [Q]w (37)

which could be written as

where [E] = [p]-l[Q]

= [E]w (38)

The derivative of the ith eigenvalue with respect to the flutter speed is given by

ov_- {e_}r{e_} (39)

where {e_} and {e_.} are the ith left and righteigenvectors respectively. _ is calculated

by recomputing the [El matrix at a slightlyMgher speed than V/and using the forward

difference technique.

by

Similarly, the derivative of the ith eigenvalue with respect to any parameter p is given

Tp = {e_}T{_,} (4o)

°o'°o-_pcan be conveniently written as

cO[E] cO[p]-1 [P]-' cO[Q] (41)op- co. [Q]+ o,

and can be computed analytically, where

°[P]-1 oo__[p]_,cop - -[p]-, (42)
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by

The analytical derivative of the flutter speed with respect to parameter p is then given

The [El matrix is composed of mass, stiffness and aerodynamic matrices. Obtaining

the analytical derivatives of the mass, stiffness and aerodynamic terms with respect to any

parameter p is straightforward for the typical section. In the case of the finite wing, the

expressions for the analytical derivatives of the [/_'] and [M] matrices (equations(21) and

(24)) are given in [35]. Since the reduced stiffness matrix [K] is obtained from [/_'] by static

condensation the analytical derivative _ is obtained by a succession of differentiations

using the chain rule. The derivatives of the aerodynamic terms are obtained by taking the

analytical derivatives of those terms that are explicit functions of the shape parameters,

given in the Appendix.
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6. EVALUATION ANALYSIS

The flutter characteristics of the airfoil are found by calculating the complex eigen

values _k = ak + iwk at various values of free stream velocity. Flutter occurs at the lowest

speed for which any Ok becomes positive.

The flutter speed was determined for the following case, the results for which have

been presented by Leishman and Crouse [32]. The parameters used are/_ = 100, xo =

0.25, ro = 0.5, wh = 10 rad/s., wo = 50 rad/s., ah = -0.5, b = 5 in., CNa = 14.65, xac =

0.286, M = 0.85. Flutter was found to occur at 92.34 ft/s., i.e., a non-dimensional speed

of V/bwo=4.43 which agrees well with the value of V/bwo=4.4 reported in [32].

The damping ratio for each of the aeroelastic modes is given by

_k = °'k

(44)

A plot of the variation of the damping ratio _ with non-dimensional speed V/bwo is given

in Fig.3. Fig.4 shows the variation of flutter speed predicted by this theory for different

values of wh/w0.

The flutter analysis was also carried out in the time-domain for comparison with the

results obtained from the eigenanalysis. A time-integration of the first order ODEs repre-

senting the aeroelastic system was done using the Wilson-0 method. The plunge and pitch

amplitudes of motion are plotted with respect to time in Figs. 5 and 6 respectively, at three

different non-dimensional speeds, including the flutter speed. It can be seen that at speeds

below the flutter speed, the oscillations that are set in due to any initial disturbance given

to the airfoil die out as time progresses, whereas, at speeds above the flutter speed, the

displacement amplitudes increase with time, leading to instability. At the flutter speed,
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the oscillations are able to maintain a constant amplitude, denoting a neutrally stable

condition.

The sensitivity of flutter speed with various parameters namely _, z0, r0, wh and we

was calculated by both analytical and finite difference methods. In the analytical method,

the derivatives of the [E] matrix (see section on Sensitivity Analysis) with respect to the

above mentioned parameters were calculated analytically. The finite difference derivatives

were calculated for step sizes of 1%, 0.1% and 0.01%. The parameters were perturbed one

at a time using these step sizes and the flutter speed recomputed. A forward difference

scheme was then applied to compute the derivatives. It can be seen from the results shown

in Table 1 that the forward difference derivatives obtained using a step size of 0.01% have

good agreement with the analytical values.

Figs. 7 - 11 show the variation of flutter speed obtained by eigenanalysis with respect

to various parameters. In each case, the sensitivity derivative computed at a particular

value of the parameter is also shown.

Having gained confidence in the accurate prediction of the sensitivity derivatives, the

sensitivity derivatives were computed both analytically and by finite difference method for

a range of transonic Mach numbers. The CN,, (M) and z,_e(M) for these calculations were

obtained from [4]. The results are tabulated in Table 2. There is good agreement between

the analytic derivatives and the finite difference derivatives obtained using a step size of

0.01%.

Before performing the sensitivity calculations of the flutter speed of the wing with re-

spect to shape parameters, comparison of natural frequencies and predicted flutter speeds

was made with results from other sources. The first three natural frequencies of an unswept
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wing and its flutter speed in subsonic flow were compared with results reported by Lands-

berger and Dugundji [36] for different laminate sequences in Table 3 and Table 4. The ma-

terial used for the wing is Hercules Graphite Epoxy (AS1/3501-6) with properties: E1 = 98

x 109 Pa, E2 = 7.9 x 109 Pa, v12 = 0.28, G12 = 5.6 x 109 Pa and p = 1520 kg/m 3. The

t.hickness of each ply is 0.134 x 10 -3 m. The flutter data used for comparison [36] are

the experimental results from the wind tunnel tests performed in the MIT Acoustic wind

tunnel. The results agree fairly well.

An experimental investigation of the flutter characteristics of the wing in transonic

flow was performed in the Langley transonic dynamics tunnel, the results of which have

been reported by Yates [37]. The 2.5 foot weakened 3 model is used for comparison

with our results. The material properties of the laminated mahogany wing are: E1 =

0.47072 x 108 psi, E2 = 0.01883 x 106 psi, vx2 = 0.28, G12 = 0.05975 x 107 psi and

p = 0.60267 slug/ft 3. The wing dimensions are: Area = 3.782 ft 2, Aspect ratio =

1.6525, Taper ratio = 0.6576, Sweep(i�4 chord) = 45 o and thickness = 0.056 ft. The

natural frequencies for the wing obtained from the present analysis is compared with the

measured natural frequencies from [37] in Table 5. A good agreement is obtained. The

flutter speed obtained from this analysis is compared with the non-dimensional flutter data

measured in air for the WEAK3 model [37] at different Mach numbers in Table 6. The

non-dimensional]zing parameter used is b,wav/'fi where/J is the' mass ratio, bs is the root

semichord, and wa is the angular frequency of the first torsion mode. For this model, b,

and w_ are 0.9165 ft and 230.9 rad/s respectively.

WEAK3 model has a low aspect ratio of 1.6525.

It should be noted that the 2.5 foot

In our aerodynamic model, we have

assumed the lift forces to be acting along the quarter chord line and the moments about

the quarter chord line, which is a good assumption for high aspect ratio wings. In reality
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however,the aerodynamicforcesand momentsaredistributed over the surface of the wing.

Yet, the flutter results obtained are encouraging.

Having achieved good prediction of flutter speeds, sensitivity analysis of the flutter

speed of the wing with respect to shape parameters is carried out. The wing box is shown

in Fig.12. The wing skins are made of 0 ° laminated Graphite/Epoxy (T300/N5208) with

the following material properties: E1 = 181 x 109 Pa, E2 = 10.3 x 109 Pa, v12 = 0.28,

G12 = 7.17 x 109 Pa and p = 1600 kg/rn 3. The critical airspeed of the wing is shown in

Fig.13 as a function of the quarter-chord sweep angle. As seen from the graph, divergence

(zero frequency flutter) instability is critical uptoa sweep angle of about 16 ° and for

higher sweep angles, the flutter mode is the unstable mode. Tables 7 and 8 give the shape

sensitivity derivatives of the divergence speeds and flutter speeds of a wing at Mach 0.9.

The analytical shape derivatives agree well with the finite difference derivatives obtained

with a stepsize of 0.01%.

The critical speeds of the wing obtained by perturbing one shape parameter at a time

from the baseline configuration are shown in Fig. 14-21. The prediction of critical speed by

analytical sensitivity calculations is also superposed. The sensitivity derivative obtained

forms a tangent to the critical speed curve at the value of the shape parameter at which

it is computed.

In order to observe the aeroelastic phenomena in real time, one of the coefficients of

the displacement function was perturbed and the system of equations(36) was integrated

with respect to time using the Wilson-0 method. The wing tip displacement is plotted as a

function of time at different speeds in Fig.22-28. The tip displacement of the unswept wing

at the divergence speed is shown in Fig.22. It can be seen that the displacement approaches

a constant amplitude at this speed. Above this speed, the displacement increases with time
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asshown in Fig.23. For the 15 ° swept wing, the displacement slowly approaches a constant

value at the divergence speed as shown in Fig.24. The oscillatory nature is due to the fact

that the flutter and divergence speeds are close enough. Fig.25 shows the flutter condition

for the 15 ° swept wing. Since the wing has already diverged at a lower speed, we see the

constant amplitude oscillations about a diverging mean position. Fig.26, 27 and 28 show

the tip displacement of the 30 ° swept wing below the flutter speed, at the flutter speed

and above the flutter speed, respectively.

The lift-curve slope of a finite wing depends on the planform of the wing and hence is

sensitive to shape variations of the wing. For a finite wing in compressible flow, the wing

lift-curve slope as given by Hauptman and Miloh [38] can be written as

4 1

= (45)
CNo [k + k+(_rc,,n h)/h] v/1 -- M2c°s2A

where k = 4/zrAR and h = X/(1 - k 2) and AR is the aspect ratio of the wing. E(h) is the

complete elliptic integral of the second kind and is given by

E(h) = (1 - h2sin2¢) 1/2 d¢
JO

(46)

Using the above expression for the wing lift-curve slope in equation(29), the flutter

calculations were carried out. The critical airspeed of the wing is shown in Fig.29 by varying

the sweep angle of the wing. The sensitivity of the flutter speed of the wing with respect to

shape parameters and the flutter speeds obtained from reanalysis by perturbing one shape

parameter at a time are shown in Fig.30-33. The sensitivity derivative forms a tangent to

the flutter speed curve at the baseline configuration and gives a linear approximation to

the flutter speeds within a certain range, about the baseline value.
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7. CONCLUDING REMARKS

The dynamic aeroelastic behavior of a two degree of freedom airfoil, with plunging and

pitching degrees of freedom, was examined using a state-space approach in the transonic

flow regime. The indicial response functions presented by Leishman and Nguyen [14] were

used to represent the unsteady aerodynamic behavior. The flutter speed of the airfoil

was determined using an eigen analysis of a system of 12 first order ordinary differential

equations. The results obtained from the eigenanalysis was compared wth the results

obtained by performing a time-integration of the aeroelastic equations. The sensitivities of

the flutter speed with respect to the mass and stiffness parameters were computed by both

analytical and finite difference methods and the results obtained are in excellent agreement

with each other.

The compressible unsteady aerodynamic theory using indicial response functions was

successfully modified to represent the aerodynamic forces and moments on a finite span

wing. Using this aerodynamic state-space model and the structural formulation based on

Ritz technique, flutter analysis of wings were carried out in transonic flow. The use of

Chebyshev polynomials for Ritz functions gives the added benefit of closed form analytical

expressions for the derivatives of stiffness and mass matrices with respect to the shape de-

sign parameters of the wing. This avoids the uncertainities and the computational expense

associated with finite difference derivative calculations. The shape sensitivity derivatives

of the critical speed of the wing were computed by analytical and finite difference meth-

ods and they are in excellent agreement with each other. These shape derivatives of the

flutter response of a wing in transonic flow would be very useful to a designer in the initial

design phase, thus avoiding the necessity of a reanalysis for small changes in the design

parameters.
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APPENDIX

The aij's axe given by

1

{133 -- K_,T{

1

a44= gqTi

a55 -" -(b3KaMTI)-I

where

a6e = -(b4KaMTI)-I

a77 -- -b5/32(?)

1
a88 "-

KqMTI

Kc,(M) = [(1 - M) + 7r/_M2(Albl + A2b2)]-I

Kq(M) = [(1 - M) + 2_rflM2(Albl + A2b2)]-I

[ A364 + A463 ]
K_(M) = L_ ---_J

KqM(M) -- '15(1 - M) + 37r,SM2b5

(47)

(48)
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The c_._'s are given by

Cll = CNo (?)_2Alb 1

c12 = CN_, (?)_2A2b _

4 1

c,3 = _(-K----_)

1 1

c14 = _(-K----_/)

c21 = CN,,(2--Vc )f12Albl(0.25_ Xac)

.2V 2
c_2 = CNo(.--_--)/_ A262(0.25 - Z_c)

A3a55
C25 --

M

A4a66
C26 --

M

CNo
c27- 16 b5_2(? )

7 1

= K, )

(49)

The constants are given by A1 = 0.3,A2 = 0.7, A3 = 1.5, A4 = -0.5, bl = 0.14, b2 -

0.53, b3 = 0.25, b4 = 0.1, b5 = 0.5.
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Analytical derivatives

Aspect ratio (AR), Area (S), Taper ratio (tr), Sweep (A)

The wing coordinates are x_, x2, x3 and x4.

span = _ S

2S
CF

span(1 + tr )

ct = tr cr

xl = 0.75 cr

x2 = span tanA + 0.75 ct

x3 = span tanA - 0.25 ct

X 4 = -0.25 cr

p= (xl + x2 +x3 + x4)

pp : (x2+ x3) - (x_+ x_)

cr ct = cr + ct

rt = cr - ct

For any point g, on the quarter chord line (-1 _< g, _< 1)

y = 0.5 span (1 + _)

x = y tanA

2y

span

(_ pp-4x + p)

71= (_ rt -crct)

_= [_,.+ (_t- _)(1 + _,)o.51_osA
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.Local chord (.c_

o_ s°-_[1- (1 - t_)(1+ ¢) 0.5]_o_a
OAR - ARX'S(1 + tr)

o_ [1- (1- t,-)(1+ ¢) o.51_o_A
OS x/Aa S(1 + tr)

Oc cr¢ cosA

Otr (1 + tr)
Oc
0-'_ = -c tanA

p = (x, + x, + z_ + x,,)

Op 0.5 S °'s [OA-"R = ARO.S 2

op 0.5p
OS S
op
--=0.0
Otr

Op 2 span

OA cos2 A

Opp = 0.5 S °'s
OAR

Opp 0.5 pp

OS- S
Opp cr

-_ = il + _)
cgpp 2 span

OA cos2A

(1 - tr) J+ (1 + tr) AR 1.s

crct= cr+ct

Octet S o.s

OAR AR 1.5

Ocrct 0.5 crct

OS S

Ocr ct
_ -0.0
Otr

Ocrct
- 0.0

OA
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rt = cr -- ct

Oft

OAR

Ort

OS-

Ort

Otr

S°'_(1 - tr)
AR 1"5 (1 + tr)

0.5 rt

S

2cr

(1 +t_)
Ort
--=0.0
OA

x -- q tanA

Oz S °'s tanA(1 + 0)

OAR - 4 AR °.5
Oz

0--ff = 0.5 (1 + 0) span tanA

0x
-- =02
0tr

0z 0.5 span (1 + ¢)

OA cos2 A

r_ = (_ pp - 4x + p)/(_ rt -- crct)

For any parameter v,

Ov
(_ rt-crct)(_ao--_. -4 a. a__o-'_÷ o.) - (_ PP - 4x + p)(_ oft

Ov

(_ rt -crct) 2

-- =0.0
Ov

37



Table 1. Sensitivity of flutter speed with respect to various parameters (M--0.85)

(p = 100, xo = 0.25, ro -- 0.5, wh = 10 rad/s.,

03e = 50 rad/s., b = 5 in., ah = -0.5)

Parameter

x0

ro

03h

oj0

Analytic

derivative

0.39296

-253.60673

239.41460

-4.35016

2.71689

a indicates step size

1%

0.38798

-248.75989

236.53840

-4.31603

2.68798

Finite Difference

derivative

0.1%

0.39244

-253.10277

239.11255

-4.34651

2.71383

o.o1%

0.39289

-253.54363

239.37244

-4.34958

2.71644



Table 2. Sensitivity of flutter speed with respect to various parameters
at different transonic Mach numbers

(p = 100, xo = 0.25, ro = 0.5, wh = 10 rad/s.,

wo -- 50 rad/s., b = 5 in., ah - -0.5)

Parameter

P

r0

03h

030

b denotes step size

Mach

number

0.8

0.85

0.8625

0.87

0.8

0.85

0.8625

0.87

0.8

0.85

0.8625

0.87

0.8

0.85

0.8625

0.87

0.8

0.85

0.8625

0.87

Sensitivityderivatives

AnMytic

0.44303

0.39296

0.46202

0.53132

-241.52263

-253.60673

-463.70394

-734.98634

243.06012

239.41460

308.46665

391.63750

-3.78605

-4.35016

-6.90676

-10.17027

2.80282

2.71689

3.58044

4.60379

Finite Difference

0.1% b 0.01%

0.44247 0.44298

0.39244 0.39289

0.46143 0.46196

0.53010 0.53070

-241.07122 -241.47758

-253.10277 -253.54363

-462.54019 -463.58734

-731.92101 -733.99406

242.76615 243.03092

239.11255 239.37244

308.08430 308.42838

390.75475 391.18409

-3.78311 -3.78576

-4.34651 -4.34958

-6.90064 -6.90615

-10.14904 -10.15867

2.79985 2.80253

2.71383 2.71644

3.57671 3.58007

4.59453 4.59857



Table 3. Comparison of natural frequencies of an unswept wing

(Area = 0.02318 m 2, Aspect ratio = 4.0132, Taper ratio = 1.0)
for different laminate sequences

Laminate

sequence

[02/905

[152/o]o

fa:15/o]o

[+3o_/01,

[+3o/oi,

Natural frequencies (Hz.)

Present [ Landsberger and Dugundji [36]

First Second Third Third

11.03

8.86

10.12

6.21

7.73

39.30

42.62

48.9

37.57

48.76

69.06

63.25

64.94

57.78

10.8

8.5

9.9

6.0

64.42

First Second

39

48

5O

41

7.8 50

67

58

63

60

65

Table 4. Comparison of flutter speed of an unswept wing

(Area = 0.02318 m 2, Aspect ratio = 4.0132, Taper ratio = 1.0)
in subsonic flow

Laminate

sequence

[02/90],

[152/0],

[+15/0].

[:F15/0]o

[+302/0],

Present

Flutter speed (m/s)

24.9

23.2

28.1

18.9

28.8

Experimental [36]

26

25

28

21

29



Table 5. Comparison of natural frequencies of the 2.5 foot WEAK3 model

(Area = 3.782 ft 2, Aspect ratio = 1.6525, Taper ratio = 0.6576, Sweep = 45 °)
with measured values

Natural

frequencies (Hz.)

First

Second

Third

Fourth

Present

9.91

36.75

60.78

102.11

Experimental [37]

9.60

38.10

50.70

98.50

Table 6. Comparison of flutter speed of the 2.5 foot WEAK3 model

(Area = 3.782 ft 2, Aspect ratio - 1.6525, Taper ratio = 0.6576, Sweep - 45 °)
with flutter data measured in the transonic wind tunnel

Mach

number

M

0.499

0.678

0.901

Mass

ratio

#

33.465

68.753

143.92

Density

of air

(slugs/ft a)

0.000830

0.000404

0.000193

Flutter

speed, V

(ft/s)

476.90

640.00

829.44

Present

0.3896

0.3647

0.3267

Non-dimensional

speed (V/b,w a v/'fi)

Experimental [37]

0.4459

0.4174

0.3700



Sweep

angle (deg)

0

15

indicates step size

Table 7. Sensitivity of divergence speed of the wing at M--0.9

(Area = 20 m 2, Aspect ratio = 10, Taper ratio = 0.5)
with respect to shape parameters

Divergence

speed(m/s

137.41

203.74

Parameter

Aspect ratio

Area

Taper ratio

Sweep angle

Aspect ratio

Area

Taper ratio

Sweep angle

Analytic

derivative

-4.9672

-4.2460

7.2069

147.0488

16.9889

-18.3916

440.3419

434.5355

Finite difference derivative

1.0% _

-4.9276

-4.2156

7.4086

147.1087

17.4989

-17.9050

451.3756

437.5666

0.1%

-4.9630

-4.2418

7.2601

147.2050

17.0278

-18.3307

441.1370

434.5507

0.01%

-4.9642

-4.2433

7.2308

148.5662

16.9773

-18.3768

440.0515

434.0796
J



Sweep

angle (deg)

0

15

3O

Table 8. Sensitivity of flutter speed of the wing at M-----0.9

(Area -- 20 m 2, Aspect ratio - 10, Taper ratio = 0.5)
with respect to shape parameters

" indicates step size

Flutter

speed(m/s)

229.90

209.67

213.22

Parameter Analytic

derivative

Aspect ratio -12.6812

Area -6.4607

Taper ratio -184.8167

Sweep angle -104.4327

Aspect ratio -10.1067

Area -4.3196

Taper ratio -199.1987

Sweep angle -37.7435

Aspect ratio -6.6440

Area -5.0568

Taper ratio -172.6965

Sweep angle 67.8415

Finite difference derivative

0.1%"

-12.6675

-6.4563

-184.7288

-104.3587

-10.0929

-4.3181

-199.1011

-37.6769

-6.6311

-5.0542

-172.6105

67.9632

0.01%

-12.6779

-6.4592

-184.7691

-104.4143

-10.1005

-4.3170

-199.0925

-37.5526

-6.6404

-5.0554

-172.6414

67.8975
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